Deterministic Rounding for Bipartite Matching and GAP ${ }^{1}$

- Maximum Weight Bipartite Matching. We are given a bipartite graph $G=(L \cup R, E)$ with weights $w_{i j}$ on edges (i, j) The objective is to find a matching $M \subseteq E$ whose weight is maximized. This problem can be solved exactly. Below we see how a fractional solution of the natural LP relaxation can be rounded to an integral solution with the same cost, thus proving its integrality gap is 1 .

$$
\begin{align*}
\operatorname{lp}(G, w):=\operatorname{maximize} & \sum_{(i, j) \in E} w_{i j} x_{i j} \tag{bipMWM-LP}\\
& \sum_{j \in R} x_{i j} \leq 1, \quad \forall i \in L \tag{1}\\
& \sum_{i \in L} x_{i j} \leq 1, \quad \forall j \in R \tag{2}\\
& 1 \geq x_{i j} \geq 0, \forall(i, j) \in E \tag{3}
\end{align*}
$$

Note that if $x_{i j} \in\{0,1\}$, then the $x_{i j}=1$ edges correspond to a matching. The above LP is a relaxation of the natural integer program capturing maximum weight matching.

- Rounding by Rotation. We now show a procedure which starts with any fractional matching x, and constructs a matching M with $w(M) \leftarrow \sum_{(i, j) \in E} w_{i j} x_{i j}$.

Theorem 1. For any bipartite graph G with weights w and any feasible solution x to $\operatorname{lp}(G, w)$, one can obtain a $\{0,1\}$-solution x^{\prime} with $\operatorname{lp}\left(x^{\prime}\right) \geq \operatorname{lp}(x)$.

Let $E_{f}(x):=\left\{(i, j) \in E: 0<x_{i j}<1\right\}$ be the fractional edges in the support of x. We now describe a procedure which takes x and converts it to x^{\prime} such that two things occur: a) the number of edges in the corresponding $E_{f}\left(x^{\prime}\right)$ is strictly less than in $E_{f}(x)$, and b) $\sum_{i, j} w_{i j} x_{i j} \leq \sum_{i, j} w_{i j} x_{i j}^{\prime}$. Continuing this till E_{f} becomes \emptyset, we end with a $\{0,1\}$-solution x^{\prime} with $\operatorname{lp}\left(x^{\prime}\right) \geq \operatorname{lp}(x)$, thus proving the theorem. See Rotate below for precise definition.

Claim 1. Both $x^{(1)}$ and $x^{(2)}$ are feasible solutions to (bipMWM-LP), and $\operatorname{lp}\left(x^{\prime}\right) \geq \operatorname{lp}(x)$.
Proof. Let's prove $x^{(1)}$ is feasible and the proof for $x^{(2)}$ is analogous. If F is a cycle, then note that the "fractional load" on any vertex is unchanged in both x and $x^{(1)}$, and thus (1) and (2) are satisfied since they were satisfied in x. If F forms a path, then we need to concern ourselves with only end vertices of this path. Let $i \in L$ (or in R, doesn't matter) be be such a vertex and let (i, j) be the unique edge in $E_{f}(x)$. Since $x_{i j}>0$, there cannot be any edge $\left(i, j^{\prime}\right)$ with $x_{i j^{\prime}}=1$. In the end, by design $x_{i j}^{(1)} \leq 1$, and since all other edges incident on i have $x^{(1)}$ the same as x, we get that (1) is satisfied.

[^0]To see that $\operatorname{lp}\left(x^{\prime}\right) \geq \operatorname{lp}(x)$, note that the "increases" in $x^{(1)}$ and $x^{(2)}$ over x is precisely

$$
\operatorname{lp}\left(x^{(1)}\right)-\operatorname{lp}(x)=\varepsilon_{1}\left(\sum_{(i, j) \in M_{2}} w_{i j}-\sum_{(i, j) \in M_{1}} w_{i j}\right) ; \operatorname{lp}\left(x^{(2)}\right)-\operatorname{lp}(x)=\varepsilon_{2}\left(\sum_{(i, j) \in M_{1}} w_{i j}-\sum_{(i, j) \in M_{2}} w_{i j}\right)
$$

One of the terms in the RHS's above must be non-negative.

```
procedure Rotate \((G=(L \cup R, E), x)\) :
    \(\triangleright\) Return a feasible solution \(x^{\prime}\) with \(\left|E_{f}\left(x^{\prime}\right)\right|<\left|E_{f}(x)\right|\) and \(\operatorname{lp}\left(x^{\prime}\right) \geq \operatorname{lp}(x)\).
    Pick an arbitrary path or cycle in \(G=\left(I, J, E_{f}\right)\). Call the edges picked \(F\).
    Decompose \(F\) into two matchings \(M_{1}\) and \(M_{2}\). \(\triangleright\) This is where bipartiteness is crucially
used.
5: Define
\[
\begin{aligned}
& \varepsilon_{1}:=\min \left(\min _{(i, j) \in M_{1}} x_{i j}, \min _{(i, j) \in M_{2}}\left(1-x_{i j}\right)\right) \\
& \varepsilon_{2}:=\min \left(\min _{(i, j) \in M_{2}} x_{i j}, \min _{(i, j) \in M_{1}}\left(1-x_{i j}\right)\right)
\end{aligned}
\]
```

\triangleright Note that both $\varepsilon_{1}, \varepsilon_{2}$ are strictly between 0 and 1 .
6: Define $x^{(1)}$ and $x^{(2)}$ as follows.
For each $(i, j) \in M_{1}, x_{i j}^{(1)}=x_{i j}-\varepsilon_{1}, \quad x_{i j}^{(2)}=x_{i j}+\varepsilon_{2}$.
For each $(i, j) \in M_{2}, x_{i j}^{(1)}=x_{i j}+\varepsilon_{1}, \quad x_{i j}^{(2)}=x_{i j}-\varepsilon_{2}$.
For all other edges $x_{i j}^{(1)}=x_{i j}^{(2)}=x_{i j}$
\triangleright Note that $x^{(1)}$ and $x^{(2)}$ satisfy (3), $\left|E_{f}\left(x^{(1)}\right)\right|<\left|E_{f}(x)\right|$ and $\left|E_{f}\left(x^{(2)}\right)\right|<\left|E_{f}(x)\right|$.
return $x^{(1)}$ or $x^{(2)}$ as x^{\prime}, whichever has higher Ip -value.

- The Generalized Assignment Problem (GAP). In GAP, we are given m jobs J, and n machines I. The processing time of job j on machine i is $p_{i j}$, and if it is allocated on machine i, it generates a revenue of $w_{i j}$ units. On the other hand, every machine i has a limit B_{i} of the maximum time it can run for. The goal is to find a feasible allocation of a subset of jobs to the machines such that the revenue generated is maximized. Formally, we need to find disjoint subsets $\mathcal{S}:=\left(S_{1}, S_{2}, \ldots, S_{n}\right)$ of J such that so as to maximize $\operatorname{val}(\mathcal{S}):=\sum_{i=1}^{n} \sum_{j \in S_{i}} w_{i j}$ subject to $\sum_{j \in S_{i}} p_{i j} \leq B_{i}$ for all i. We let $\mathcal{I}:=\left(I, J, w_{i j}, p_{i j}\right)$ denote a GAP instance.
- LP Relaxation. The LP-relaxation looks very similar to the bipartite matching LP.

$$
\begin{align*}
\operatorname{lp}(\mathcal{I}):=\operatorname{maximize} & \sum_{i \in I, j \in J} w_{i j} x_{i j} \tag{GAP-LP}\\
& \sum_{i \in I} x_{i j} \leq 1, \quad \forall j \in J \tag{4}\\
& \sum_{j \in J} p_{i j} x_{i j} \leq B_{i}, \quad \forall i \in I \tag{5}\\
& x_{i j}=0, \quad \forall j \in J, i \in I: p_{i j}>B_{i} \tag{6}
\end{align*}
$$

Indeed, if all B_{i} 's and $p_{i j}$'s are 1 , then it is precisely the same. $x_{i j}$'s indicate whether j is allocated to i. (5) asserts that the total processing times on any machine must be at most the machine's limit. (6) is the assertion that $p_{i j}>B_{i}$ implies j cannot be allocated to i. It's worth pointing out that (5) doesn't imply this and therefore (6) must explicitly be added to the LP.

- Rounding. The algorithm starts with a solution x of (GAP-LP). It then uses this solution to construct a maximum weight bipartite matching instance (G, w) and a fractional solution \mathbf{y} to $\operatorname{lp}(G, w)$ such that (a) $\operatorname{lp}(\mathbf{y})=\operatorname{lp}(\mathbf{x})$, that is, the LP-value of \mathbf{y} in the bipartite matching is at least that of \mathbf{x} in the GAP instance, (b) given an integral matching M in G of weight $w(M)$, can construct a feasible solution $\sigma: J \rightarrow I$ of value $\operatorname{alg}(\sigma) \geq w(M) / 2$. Together with Theorem 1, we get a 2 -approximation since one can obtain a matching M with $w(M) \geq \operatorname{lp}(\mathbf{y})$. We now give details.

New Bipartite Graph. For every $i \in I$, evaluate $n_{i}:=\left\lceil\sum_{j \in J} \mathbf{x}_{i j}\right\rceil$. Thus, n_{i} counts the "number" of jobs that are assigned by the LP to machine i. We now construct a bipartite graph $G=(N \cup J, E)$, where one part of the bipartition is J, the set of jobs. The other part N is formed by taking n_{i} copies of each machine i in I. Let N_{i} denote this set of n_{i} copies; thus, $N=\bigsqcup_{i \in I} N_{i}$.
We next describe the edges in E. Fix a machine $i \in I$. We now describe the edges between N_{i} and J. Consider the job vertices in J in decreasing processing time order w.r.t. i. Indeed, for simplicity rename the jobs such that $p_{i 1} \geq p_{i 2} \geq \cdots \geq p_{i m}$. Now, consider the fractions $\mathbf{x}_{i 1}, \mathbf{x}_{i 2}, \ldots, \mathbf{x}_{i m}$ in this order. Define $j_{0}=1$, and let $j_{1}, j_{2}, \ldots, j_{n_{i}-1}$ be the "boundary" items defined as follows : $\mathbf{x}_{i, 1}+\cdots+\mathbf{x}_{i, j_{1}} \geq 1$, and $\mathbf{x}_{i, 1}+\cdots+\mathbf{x}_{i, j_{1}-1}<1 ; \mathbf{x}_{i, 1}+\cdots+\mathbf{x}_{i, j_{2}} \geq 2$, and $\mathbf{x}_{i, 1}+\cdots+\mathbf{x}_{i, j_{1}-2}<2$; and so on. Formally, for each $1 \leq \ell \leq n_{i}-1$, we find j_{ℓ} such that

$$
\sum_{j=1}^{j_{\ell}} \mathbf{x}_{i j} \geq \ell ; \quad \sum_{j=1}^{j_{\ell}-1} \mathbf{x}_{i j}<\ell
$$

Recall there are n_{i} copies of the machine i in N_{i}. The ℓ th copy, call it i_{ℓ}, has an edge to job vertices $j_{\ell-1}$ to j_{ℓ} (j_{0} is the item 1). The n_{i} th copy has an edge to job vertices $j_{n_{i}-1}$ to m. We repeat this for every $i \in I$ to get all the edges E. For the edge $\left(i_{\ell}, j\right)$ we give weight $w_{i_{\ell}, j}:=w_{i j}$. See Figure 1 for an illustration.

New Fractional Matching. Now we define $\mathbf{y}_{i j}$ for $i \in N$ and $j \in J$. Once again, fix a machine i and we now define $\mathbf{y}_{i_{\ell}, j}$ for $1 \leq \ell \leq n_{i}$ as follows. It is so defined such that for every copy i_{ℓ}, the total fractional weight incident on it is at most 1 (in fact, it'll be exactly 1 for all copies but the n_{i} th copy). The total fractional weight incident on item j is the same as that induced by \mathbf{x}. It should be clear how to do it given the way edges are defined above. See Figure 1 for an illustration. Formally, it is

$$
\begin{aligned}
\mathbf{y}_{i_{\ell}, j} & = & \mathbf{x}_{i j}, & \text { for } j_{\ell-1}<j<j_{\ell} \text { or } j_{n_{i}-1}<j \leq m \\
\mathbf{y}_{i_{\ell}, j_{\ell-1}} & = & \mathbf{x}_{i, j_{\ell-1}}-\mathbf{y}_{i_{\ell-1}, j_{\ell-1}} & (\text { if } \ell=1, \text { then the second term is } 0) .
\end{aligned}
$$

The following proceeds from the definition and will be crucial later.
Claim 2. For any machine i, for any $1 \leq \ell \leq n_{i}-1$, we have $\sum_{j=j_{\ell-1}}^{j_{\ell}} \mathbf{y}_{i_{\ell} j}=1$.

Figure 1: Illustration of edges between N_{i} and J for one machine i, and also the description of \mathbf{y}-values on these edges. Note that the \mathbf{y}-load on jobs equal the \mathbf{x}-loads, and the \mathbf{y}-load on vertices i_{1} to i_{3} is 1 , while on i_{4} it is <1.

Proof. Since $\ell \leq n_{i}-1, \mathbf{y}_{i_{\ell} j}>0$ for $j_{\ell} \leq j \leq j_{\ell+1}$, and they sum to exactly 1 .
Claim 3. y is a valid feasible solution to (bipMWM-LP) with value $\operatorname{lp}(y)=\operatorname{lp}(x)$.
Proof. The following can be inspected. For any job j and $i \in I$, we have $\sum_{i_{\ell} \in N_{i}} \mathbf{y}_{i_{\ell}, j}=\mathbf{x}_{i j}$. Thus, by design of \mathbf{y}, we have that \mathbf{y} satisfies (2) where $R=J$. It also implies $\sum_{i_{\ell} \in N_{i}} \mathbf{w}_{i_{\ell}, j} \mathbf{y}_{i_{\ell}, j}=\mathbf{w}_{i j} \mathbf{x}_{i j}$ since $\mathbf{w}_{i_{\ell, j}}=\mathbf{w}_{i j}$. Thus, $\operatorname{lp}(\mathbf{y})=\operatorname{lp}(\mathbf{x})$. By design, we have $\sum_{j \in J} \mathbf{y}_{i_{\ell}, j} \leq 1$ for all $i_{\ell} \in N_{i}$.

Rounding and Pruning. From Theorem 1, we get that $G=(N \cup J, E, w)$ has a bipartite matching M with $w(M) \geq \operatorname{lp}(\mathbf{y})$. The GAP rounding ends by showing how to obtain $\sigma: J \rightarrow I$ using M. One idea is the following: for every $\left(i_{\ell}, j\right) \in M$ where $i_{\ell} \in N_{i}$, allocate job j to machine i. Let's call this allocation σ^{\prime}.
Here is the main lemma which implies 2-approximation.

Lemma 1. For any machine $i, \sum_{j \in J: \sigma^{\prime}(j)=i} p_{i j} \leq B_{i}+\Delta_{i}$, where $\Delta_{i}:=\max _{j \in J} p_{i j}$.

Proof. This is where we use the fact that the items (for machine i) were ordered in decreasing order of processing times when we formed the graph. Let J_{ℓ} be the set of jobs from $j_{\ell-1}$ to j_{ℓ}, and let $J_{n_{i}}$ be the jobs from j_{ℓ} to m. Note that the vertex i_{ℓ} can be matched to a vertex only from J_{ℓ}. Let σ_{ℓ}^{\prime} be this job, and we let it be \perp if i_{ℓ} was unmatched; in this case we define $p_{i \ell, \sigma_{\ell}^{\prime}}:=0$.
Since x is a feasible solution to (GAP-LP), we get

$$
\begin{equation*}
B_{i} \geq \sum_{j \in J} p_{i j} \mathbf{x}_{i j}=\sum_{\ell=1}^{n_{i}} \sum_{j \in J_{\ell}} p_{i j} \mathbf{y}_{i_{\ell, j}} \tag{7}
\end{equation*}
$$

Now, since the $p_{i j}$'s are in decreasing order, for any $j \in J_{\ell}$ and $j^{\prime} \in J_{\ell+1}$, we have $p_{i j} \geq p_{i j^{\prime}}$. In particular, we have $p_{i j} \geq p_{i, \sigma_{\ell+1}^{\prime}}$ for all $1 \leq \ell \leq n_{i}-1, j \in J_{\ell}$. Therefore,

$$
\text { For } 1 \leq \ell \leq n_{i}-1, \quad \sum_{j \in J_{\ell}} p_{i j} \mathbf{y}_{i_{\ell}, j} \geq p_{i, \sigma_{\ell+1}^{\prime}} \sum_{j \in J_{\ell}} \mathbf{y}_{i_{\ell}, j} \underbrace{=}_{\text {Claim 2 }} p_{i, \sigma_{\ell+1}^{\prime}}
$$

Substituting in (7), we get

$$
B_{i} \geq \sum_{\ell=1}^{n_{i}-1} p_{i, \sigma_{\ell+1}^{\prime}}=\operatorname{load}_{\sigma^{\prime}}(i)-p_{i, \sigma_{1}^{\prime}}
$$

Since $p_{i, \sigma_{1}^{\prime}} \leq \Delta_{i}$, by definition, the lemma follows.
In particular, if we define $S_{i}^{\prime}:=\left\{j \in J: \sigma^{\prime}(j)=i\right\}$ and let $\mathcal{S}^{\prime}=\left(S_{1}^{\prime}, \ldots, S_{n}^{\prime}\right)$, then $\operatorname{val}\left(\mathcal{S}^{\prime}\right)=$ $w(M) \geq \operatorname{lp}(\mathbf{x})$, but for the load on a machine i we can only say $\operatorname{load}_{i} \leq B_{i}+\Delta_{i}$.
To obtain a valid approximation algorithm, for every machine i, we partition S_{i}^{\prime} into two : $S_{i, 1}^{\prime}$ which contains the job $j \in S_{i}^{\prime}$ with the largest $p_{i j}$ and the rest which we call $S_{i, 2}^{\prime}$. We define S_{i} to be the one among these with the largest weight. That is, $S_{i}=S_{i, 1}^{\prime}$ if $\sum_{j \in S_{i, 1}^{\prime}} w_{i j} \geq \sum_{j \in S_{i, 2}^{\prime}} w_{i j}$, and $S_{i}=S_{i, 2}^{\prime}$ otherwise. Note that by design (a) $\sum_{j \in S_{i}} w_{i j} \geq \frac{1}{2} \cdot \sum_{j \in S_{i}^{\prime}} w_{i j}$, and (b) $\sum_{j \in S_{i}} p_{i j} \leq B_{i}$. The reason for (b) is that $\sum_{j \in S_{i, 1}^{\prime}} p_{i j} \leq B_{i}$ since j is a single job where $\mathbf{x}_{i j}>0$, and thus $p_{i j}$ for this job is $\leq B_{i}$, and $\sum_{j \in S_{i, 2}^{\prime}} p_{i j} \leq B_{i}$ due to Lemma 1. Therefore, at the end we end with a feasible allocation \mathcal{S} with total value $\operatorname{val}(\mathcal{S}) \geq \frac{w(M)}{2} \geq \operatorname{lp}(\mathbf{x}) / 2$.
To summarize,

```
procedure \(\operatorname{GAP} \operatorname{Rounding}\left(\mathcal{I}=\left(I \cup J, p_{i j}, w_{i j}\right)\right)\) :
    Solve (GAP-LP) to get \(\mathbf{x}\).
    Form bipartite graph \(G=(N \cup J, E, w)\) with fractional solution \(\mathbf{y} . \triangleright \operatorname{lp}(\mathbf{y})=\operatorname{lp}(\mathbf{x})\).
    Find matching \(M\) in \(G\) with \(w(M) \geq \operatorname{lp}(\mathbf{y}) \geq \operatorname{lp}(\mathbf{x})\).
    Find tentative assignment \(\sigma^{\prime}\) of all \(j \in J\) with val \((\sigma) \geq \operatorname{lp}(\mathbf{x})\).
    For each \(i \in I\) either assign job with max processing time among jobs allocated to it by
\(\sigma^{\prime}\), or the remaining, whichever gives more value.
```

Theorem 2. GAP Rounding is a $\frac{1}{2}$-approximation for the Generalized Assignment Problem.

Remark: Recall the load balancing problem from a previous lecture : n jobs with processing times p_{j}, m machines, goal was to find an assignment which minimizes the maximum load on a machine. This problem has a PTAS, and indeed, an EPTAS. A generalization of the problem, called makespan minimization on unrelated machines is the same input as above except job i takes a different $p_{i j}$ time on machine i, and the $p_{i j}$'s for different i 's may not be related. This is a much harder problem, and in fact, there can be no 1.499-approximation algorithm unless $P=N P$. On the other hand, note that the algorithm described here gives a 2 -approximation. In particular, in (GAP-LP) replace B_{i} in (5) by T, and find (using binary search, say) the smallest T for which the LP returns a feasible solution. Lemma 1 shows that if the LP returns a feasible solution, then we can assign all jobs with maximum load $\leq 2 T$, since $\Delta_{i} \leq T$ due to (6).

Notes

The algorithm for GAP described here is from the paper [2] by Shmoys and Tardos. This generalized a result from an earlier paper [5] by Lenstra, Shmoys, and Tardos which gave the first 2-approximation for
the unrelated makespan minimization problem. This later paper also contained the $\frac{3}{2}-\varepsilon$ hardness, and closing this gap has resisted effort and is an outstanding open problem. For GAP, the version we study, better approximation algorithms are possible. There is an $\left(1-\frac{1}{e}\right)$-approximation algorithm described in the paper [4] by Fleischer, Goemans, Mirrokni, and Sviridenko, and this factor was improved to ($1-\frac{1}{e}+\varepsilon_{0}$) for a (very) small constant ε_{0} in the paper [3] by Feige and Vondrák. The best known hardness of approximation for GAP is $\frac{10}{11}$ which can be found in the paper [1] by Chakrabarty and Goel.

References

[1] D. Chakrabarty and G. Goel. On the approximability of budgeted allocations and improved lower bounds for submodular welfare maximization and GAP. SIAM Journal on Computing (SICOMP), 39(6):2189-2211, 2010.
[2] David B. Shmoys and Eva Tardos. An approximation algorithm for the generalized assignment problem. Mathematical Programming, 62:461-474, 1993.
[3] U. Feige and J. Vondrák. Approximation algorithms for allocation problems: Improving the factor of $1-\frac{1}{e}$. Proceedings of FOCS, 2006.
[4] L. Fleischer, M. X. Goemans, V. Mirrokini, and M. Sviridenko. Tight Approximation Algorithms for Maximum General Assignment Problems,. Proc., ACM-SIAM Symposium on Discrete Algorithms (SODA), 2006.
[5] J. K. Lenstra, D. B. Shmoys, and E. Tardos. Approximation Algorithms for Scheduling Unrelated Parallel Machines. Math. Programming, 46:259-271, 1990.

[^0]: ${ }^{1}$ Lecture notes by Deeparnab Chakrabarty. Last modified: 7th Feb, 2022
 These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at deeparnab@dartmouth.edu. Highly appreciated!

