Deterministic Rounding for Bipartite Matching and GAP!

* Maximum Weight Bipartite Matching. We are given a bipartite graph G = (L U R, E) with weights
w;; on edges (4,j) The objective is to find a matching M C E whose weight is maximized. This
problem can be solved exactly. Below we see how a fractional solution of the natural LP relaxation
can be rounded to an integral solution with the same cost, thus proving its integrality gap is 1.

Ip(G,w) := maximize > wj;mi (bipMWM-LP)
(3,5)EE
D ay <1, Vie L (1)
JER
> w1, Vi€R)
i€L
1> >0,V(i,j) € E 3)

Note that if z;; € {0,1}, then the z;; = 1 edges correspond to a matching. The above LP is a
relaxation of the natural integer program capturing maximum weight matching.

* Rounding by Rotation. We now show a procedure which starts with any fractional matching =, and
constructs a matching M with w(M) <= >~ ; e p wi;Tij-

Theorem 1. For any bipartite graph G with weights w and any feasible solution z to Ip(G, w),
one can obtain a {0, 1}-solution 2’ with Ip(z’) > Ip(z).

Let E¢(z) := {(i,j) € E : 0 < x;; < 1} be the fractional edges in the support of x. We now
describe a procedure which takes = and converts it to 2’ such that two things occur: a) the number of
edges in the corresponding E¢(z') is strictly less than in E¢(z), and b) 3, . wijzij < 37, 5 wijay;.
Continuing this till £ becomes (), we end with a {0, 1}-solution 2" with Ip(z’) > Ip(z), thus proving
the theorem. See ROTATE below for precise definition.

Claim 1. Both z(!) and z(?) are feasible solutions to (bipMWM-LP), and Ip(z’) > Ip(x).

Proof. Let’s prove (1) is feasible and the proof for z(?) is analogous. If F is a cycle, then note that
the “fractional load” on any vertex is unchanged in both z and W), and thus (1) and (2) are satisfied
since they were satisfied in x. If F' forms a path, then we need to concern ourselves with only end
vertices of this path. Leti € L (or in R, doesn’t matter) be be such a vertex and let (i, j) be the unique
edge in E¢(x). Since x;; > 0, there cannot be any edge (4, j') with z;;; = 1. In the end, by design
1)

931(] < 1, and since all other edges incident on ¢ have (1) the same as x, we get that (1) is satisfied.

!Lecture notes by Deeparnab Chakrabarty. Last modified : 7th Feb, 2022
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

To see that Ip(z’) > Ip(x), note that the “increases” in (1) and (?) over z is precisely

Ip(z™M)~Ip(z) = &1 Z wij — Z wij | 5 Ip(a®)—Ip(z) = &3 2 (I Z (i

One of the terms in the RHS’s above must be non-negative. O

1: procedure ROTATE(G = (LU R, E), z):
75 > Return a feasible solution ' with |E¢(z")| < |Ef(z)| and Ip(z") > Ip(x).
3: Pick an arbitrary path or cycle in G = ([, J, Ey). Call the edges picked F'.

4: Decompose F' into two matchings M7 and My. > This is where bipartiteness is crucially
used.
5: Define

€1 :=min | min z;, min (1- x”)>
<(i7j)€M1 (4,5)€EM2

€9 1= min< min x;;, min (1 — 1‘”)>

> Note that both €1, €5 are strictly between 0 and 1.

6: Define (1) and 22 as follows.

For each (i, j) € My, l“z(jl) = Tij — €1, “TEJQ)
(2)

ij

= Tj;j + €2.

For each (3, j) € Mo, :cz(jl) — i - E1, &

For all other edges xfjl) = .%‘5]2) = Tyj

> Note that 2V and 22 satisfy (3), |Ef(z(V)| < |Ey(2)| and |Ef(2?)| < |Ef(x)] .
7: return (Y or 2(2) as 2/, whichever has higher |p-value.

= T — £9.

» The Generalized Assignment Problem (GAP). In GAP, we are given m jobs J, and n machines 1.
The processing time of job j on machine 7 is p;;, and if it is allocated on machine 4, it generates a
revenue of w;; units. On the other hand, every machine 7 has a limit B; of the maximum time it can
run for. The goal is to find a feasible allocation of a subset of jobs to the machines such that the
revenue generated is maximized. Formally, we need to find disjoint subsets S := (51,52, ..., Sy) of
J such that so as to maximize val(S) := 371, >~ e 5 wij subject to >~ g pij < B for all i. We let
T := (I, J, w;j, pi;j) denote a GAP instance.

* LP Relaxation. The LP-relaxation looks very similar to the bipartite matching LP.

Ip(Z) := maximize Z WijTij (GAP-LP)
iel,jed
D wy <, VjelJ (4)
il
> piywy < B, Vi€l ©)
jeJ
Tij = 0, Viediel : Pij > B; (6)

Indeed, if all B;’s and p;;’s are 1, then it is precisely the same. x;;’s indicate whether j is allocated to
1. (5) asserts that the total processing times on any machine must be at most the machine’s limit. (6) is
the assertion that p;; > B; implies j cannot be allocated to 7. It’s worth pointing out that (5) doesn’t
imply this and therefore (6) must explicitly be added to the LP.

Rounding. The algorithm starts with a solution x of (GAP-LP). It then uses this solution to construct
a maximum weight bipartite matching instance (G, w) and a fractional solution y to Ip(G, w) such
that (a) Ip(y) = Ip(x), that is, the LP-value of y in the bipartite matching is at least that of x in
the GAP instance, (b) given an integral matching M in G of weight w(M), can construct a feasible
solution o : J — I of value alg(o) > w(M)/2. Together with Theorem 1, we get a 2-approximation
since one can obtain a matching M with w(M) > Ip(y). We now give details.

New Bipartite Graph. For every i € I, evaluate n; := {Z jed Xﬂ' Thus, n; counts the “number” of

jobs that are assigned by the LP to machine i. We now construct a bipartite graph G = (N U J, E),
where one part of the bipartition is J, the set of jobs. The other part N is formed by taking n; copies
of each machine 7 in 1. Let N; denote this set of n; copies; thus, N = |—|i€ 1 V.

We next describe the edges in E. Fix a machine ¢ € I. We now describe the edges between NV; and
J. Consider the job vertices in J in decreasing processing time order w.r.t. 7. Indeed, for simplicity
rename the jobs such that p;; > pj2 > -+ > pim. Now, consider the fractions x;1,X;2, - - . , Xim
in this order. Define jo = 1, and let jy, jo,..., jn;—1 be the “boundary” items defined as follows :
Xi1 +--- +Xi,j1 > 1,and Xi1 +-- '+Xi7j1—1 <1; Xi,1 +-- ""Xi,jz > 2,and Xi,1 +-- '+Xi,j1—2 < 2;
and so on. Formally, for each 1 < ¢ < n; — 1, we find j, such that

Je—1

Je
ZX@'ZE; ZXU<£
=1 j=1

Recall there are n; copies of the machine ¢ in IV;. The £¢th copy, call it iy, has an edge to job vertices
Je—1 to je (jo is the item 1). The n;th copy has an edge to job vertices j,,—1 to m. We repeat this for
every i € I to get all the edges E. For the edge (i¢, j) we give weight w;, j := w;;. See Figure 1 for
an illustration.

New Fractional Matching. Now we define y;; for ¢ € N and j € J. Once again, fix a machine 7 and
we now define y;, ; for 1 < ¢ < n; as follows. It is so defined such that for every copy i, the total
fractional weight incident on it is at most 1 (in fact, it’ll be exactly 1 for all copies but the n;th copy).
The total fractional weight incident on item j is the same as that induced by x. It should be clear how
to do it given the way edges are defined above. See Figure 1 for an illustration. Formally, it is

Vi = Xij forje—1 <j <jeorjp-1<j<m
Yigje1 = Xijeo1 — Yie_1,je1 (if £ = 1, then the second term is 0).
Je—1
Yieje = 1- Z Yi,j Vi<{<mn;—1
J=Jje—1

The following proceeds from the definition and will be crucial later.

L

Claim 2. For any machine ¢, forany 1 < ¢ < n; — 1, we have Z?:jg,l Yi,j = L.

/ ‘ \ S Yij
07~ NS
05/ o9 N\ 0.6 07/ 03\

e o ‘o “e” @ pl

Jo J1 J2 Ja JoJ1)2

N;
n WEDE
N v 7 - N
/ o\ / Ny

~
\\

/o3 07\/02 05

ordered in decreasing p;; ordered in decreasing p;;

Figure 1: lllustration of edges between N; and J for one machine i, and also the description of y-values on
these edges. Note that the y-load on jobs equal the x-loads, and the y-load on vertices i1 to i3 is 1, while
oniyitis < 1.

Proof. Since £ < n; — 1,y;,; > 0for j, < j < jpi1, and they sum to exactly 1.]

Claim 3. y is a valid feasible solution to (bipMWM-LP) with value Ip(y) = Ip(x).

Proof. The following can be inspected. For any job j and ¢ € I, we have Zié eN, Yiej = Xij. Thus,
by design of y, we have that y satisfies (2) where R = J. It also implies ZieeNi Wi Yiej = WijXij
since w;, j = w;;. Thus, Ip(y) = Ip(x). By design, we have . ; y;,; < 1 forall iy € NN;. O

Rounding and Pruning. From Theorem 1, we get that G = (N U J, E, w) has a bipartite matching M
with w(M) > Ip(y). The GAP rounding ends by showing how to obtain o : J — I using M. One
idea is the following: for every (is, j) € M where iy € NN;, allocate job j to machine 7. Let’s call this
allocation o”.

Here is the main lemma which implies 2-approximation.

Lemma 1. For any machine i,) _; Dij < B; + A, where A; := maxjej pij.

j€J:0’(4)

Proof. This is where we use the fact that the items (for machine ¢) were ordered in decreasing order
of processing times when we formed the graph. Let J; be the set of jobs from j,_ to jy, and let J,,,
be the jobs from j, to m. Note that the vertex ¢y can be matched to a vertex only from J,. Let 02, be
this job, and we let it be L if 4, was unmatched; in this case we define p; ol = 0.

Since x is a feasible solution to (GAP-LP), we get
n
B; > Zpisz'j = Z Z PijYig.j)
jeJ =1 jeJ,
Now, since the p;;’s are in decreasing order, for any j € J; and j' € Jyi1, we have pij = pijr- In

particular, we have p;; > Piol,, forall1 < /¢ <n;— 1,75 € Jy. Therefore,

For1 </ <mn;—1, Z PijYiej 2 Pio), Z Yiei = Pioy,,
jede JeJr Claim 2

Substituting in (7), we get

n;—1

Bi > Z pi,a’é7L1 = |Oad0/(i) - pi,o"l
/=1
Since p; 51 < A;, by definition, the lemma follows. 0

In particular, if we define S} := {j € J : ¢/(j) = i} and let S’ = (57,...,5},), then val(§') =
w(M) > Ip(x), but for the load on a machine 7 we can only say load; < B; + A;.

To obtain a valid approximation algorithm, for every machine i, we partition S} into two : 52,1 which
contains the job j € S/ with the largest p;; and the rest which we call S, ,. We define S; to be the one
among these with the largest weight. That is, S; = 57 , if Zjes;J wij > Zjeség wij, and S; = S},
otherwise. Note that by design (a) Y- ;g wij > 3 - Y ;¢ g1 wij» and (b) 3~ pij < Bi. The reason

for (b) is that) _ jes: | Dij < B; since j is a single job where x;; > 0, and thus p;; for this jobis < B;,

and > jes: , Pij < B; due to Lemma 1. Therefore, at the end we end with a feasible allocation S with
total value val(S) > % > Ip(x)/2.

To summarize,

1: procedure GAP ROUNDING(Z = (I U J, p;j, wij)):

2: Solve (GAP-LP) to get x.

3: Form bipartite graph G = (N U J, E, w) with fractional solution y.>> Ip(y) = Ip(x).

4: Find matching M in G with w(M) > Ip(y) > Ip(x).

55 Find tentative assignment o’ of all j € J with val(c) > Ip(x).

6 For each 7 € I either assign job with max processing time among jobs allocated to it by
o, or the remaining, whichever gives more value.

Theorem 2. GAP ROUNDING is a %—approximation for the Generalized Assignment Problem.

Remark: Recall the load balancing problem from a previous lecture : n jobs with processing
times p;, m machines, goal was to find an assignment which minimizes the maximum load on
a machine. This problem has a PTAS, and indeed, an EPTAS. A generalization of the problem,
called makespan minimization on unrelated machines is the same input as above except job 1
takes a different p;; time on machine i, and the p;;’s for different i’s may not be related. This
is a much harder problem, and in fact, there can be no 1.499-approximation algorithm unless
P = NP. On the other hand, note that the algorithm described here gives a 2-approximation. In
particular, in (GAP-LP) replace B; in (5) by T, and find (using binary search, say) the smallest
T for which the LP returns a feasible solution. Lemma 1 shows that if the LP returns a feasible
solution, then we can assign all jobs with maximum load < 2T, since 2; < T due to (6).

Notes

The algorithm for GAP described here is from the paper [2] by Shmoys and Tardos. This generalized a
result from an earlier paper [5] by Lenstra, Shmoys, and Tardos which gave the first 2-approximation for

the unrelated makespan minimization problem. This later paper also contained the % — ¢ hardness, and
closing this gap has resisted effort and is an outstanding open problem. For GAP, the version we study,
better approximation algorithms are possible. There is an (1 — é)—approximation algorithm described in the
paper [4] by Fleischer, Goemans, Mirrokni, and Sviridenko, and this factor was improved to (1 — é +¢9) for
a (very) small constant € in the paper [3] by Feige and Vondrak. The best known hardness of approximation
for GAP is % which can be found in the paper [1] by Chakrabarty and Goel.

References

[1] D. Chakrabarty and G. Goel. On the approximability of budgeted allocations and improved lower
bounds for submodular welfare maximization and GAP. SIAM Journal on Computing (SICOMP),
39(6):2189-2211, 2010.

[2] David B. Shmoys and Eva Tardos. An approximation algorithm for the generalized assignment problem.
Mathematical Programming, 62:461-474, 1993.

[3] U. Feige and J. Vondrdk. Approximation algorithms for allocation problems: Improving the factor of
1 — 1. Proceedings of FOCS, 2006.

[4] L. Fleischer, M. X. Goemans, V. Mirrokini, and M. Sviridenko. Tight Approximation Algorithms
for Maximum General Assignment Problems,. Proc., ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2006.

[5] J. K. Lenstra, D. B. Shmoys, and E. Tardos. Approximation Algorithms for Scheduling Unrelated
Parallel Machines. Math. Programming, 46:259-271, 1990.

