
Deterministic Rounding for Bipartite Matching and GAP1

• Maximum Weight Bipartite Matching. We are given a bipartite graph G = (L ∪ R,E) with weights
wij on edges (i, j) The objective is to find a matching M ⊆ E whose weight is maximized. This
problem can be solved exactly. Below we see how a fractional solution of the natural LP relaxation
can be rounded to an integral solution with the same cost, thus proving its integrality gap is 1.

lp(G,w) := maximize
∑

(i,j)∈E

wijxij (bipMWM-LP)

∑
j∈R

xij ≤ 1, ∀i ∈ L (1)

∑
i∈L

xij ≤ 1, ∀j ∈ R (2)

1 ≥ xij ≥ 0, ∀(i, j) ∈ E (3)

Note that if xij ∈ {0, 1}, then the xij = 1 edges correspond to a matching. The above LP is a
relaxation of the natural integer program capturing maximum weight matching.

• Rounding by Rotation. We now show a procedure which starts with any fractional matching x, and
constructs a matching M with w(M)←

∑
(i,j)∈E wijxij .

Theorem 1. For any bipartite graph G with weights w and any feasible solution x to lp(G,w),
one can obtain a {0, 1}-solution x′ with lp(x′) ≥ lp(x).

Let Ef (x) := {(i, j) ∈ E : 0 < xij < 1} be the fractional edges in the support of x. We now
describe a procedure which takes x and converts it to x′ such that two things occur: a) the number of
edges in the corresponding Ef (x′) is strictly less than in Ef (x), and b)

∑
i,j wijxij ≤

∑
i,j wijx

′
ij .

Continuing this till Ef becomes ∅, we end with a {0, 1}-solution x′ with lp(x′) ≥ lp(x), thus proving
the theorem. See ROTATE below for precise definition.

Claim 1. Both x(1) and x(2) are feasible solutions to (bipMWM-LP), and lp(x′) ≥ lp(x).

Proof. Let’s prove x(1) is feasible and the proof for x(2) is analogous. If F is a cycle, then note that
the “fractional load” on any vertex is unchanged in both x and x(1), and thus (1) and (2) are satisfied
since they were satisfied in x. If F forms a path, then we need to concern ourselves with only end
vertices of this path. Let i ∈ L (or inR, doesn’t matter) be be such a vertex and let (i, j) be the unique
edge in Ef (x). Since xij > 0, there cannot be any edge (i, j′) with xij′ = 1. In the end, by design
x
(1)
ij ≤ 1, and since all other edges incident on i have x(1) the same as x, we get that (1) is satisfied.

1Lecture notes by Deeparnab Chakrabarty. Last modified : 7th Feb, 2022
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

1

To see that lp(x′) ≥ lp(x), note that the “increases” in x(1) and x(2) over x is precisely

lp(x(1))−lp(x) = ε1

 ∑
(i,j)∈M2

wij −
∑

(i,j)∈M1

wij

 ; lp(x(2))−lp(x) = ε2

 ∑
(i,j)∈M1

wij −
∑

(i,j)∈M2

wij

One of the terms in the RHS’s above must be non-negative.

1: procedure ROTATE(G = (L ∪R,E), x):
2: . Return a feasible solution x′ with |Ef (x′)| < |Ef (x)| and lp(x′) ≥ lp(x).
3: Pick an arbitrary path or cycle in G = (I, J, Ef). Call the edges picked F .
4: Decompose F into two matchings M1 and M2. . This is where bipartiteness is crucially

used.
5: Define

ε1 := min

(
min

(i,j)∈M1

xij , min
(i,j)∈M2

(1− xij)
)

ε2 := min

(
min

(i,j)∈M2

xij , min
(i,j)∈M1

(1− xij)
)

. Note that both ε1, ε2 are strictly between 0 and 1.
6: Define x(1) and x(2) as follows.

For each (i, j) ∈M1, x(1)ij = xij − ε1, x
(2)
ij = xij + ε2.

For each (i, j) ∈M2, x(1)ij = xij + ε1, x
(2)
ij = xij − ε2.

For all other edges x(1)ij = x
(2)
ij = xij

. Note that x(1) and x(2) satisfy (3), |Ef (x(1))| < |Ef (x)| and |Ef (x(2))| < |Ef (x)| .
7: return x(1) or x(2) as x′, whichever has higher lp-value.

• The Generalized Assignment Problem (GAP). In GAP, we are given m jobs J , and n machines I .
The processing time of job j on machine i is pij , and if it is allocated on machine i, it generates a
revenue of wij units. On the other hand, every machine i has a limit Bi of the maximum time it can
run for. The goal is to find a feasible allocation of a subset of jobs to the machines such that the
revenue generated is maximized. Formally, we need to find disjoint subsets S := (S1, S2, . . . , Sn) of
J such that so as to maximize val(S) :=

∑n
i=1

∑
j∈Si

wij subject to
∑

j∈Si
pij ≤ Bi for all i. We let

I := (I, J, wij , pij) denote a GAP instance.

• LP Relaxation. The LP-relaxation looks very similar to the bipartite matching LP.

lp(I) := maximize
∑

i∈I,j∈J
wijxij (GAP-LP)

∑
i∈I

xij ≤ 1, ∀j ∈ J (4)∑
j∈J

pijxij ≤ Bi, ∀i ∈ I (5)

xij = 0, ∀j ∈ J, i ∈ I : pij > Bi (6)

2

Indeed, if all Bi’s and pij’s are 1, then it is precisely the same. xij’s indicate whether j is allocated to
i. (5) asserts that the total processing times on any machine must be at most the machine’s limit. (6) is
the assertion that pij > Bi implies j cannot be allocated to i. It’s worth pointing out that (5) doesn’t
imply this and therefore (6) must explicitly be added to the LP.

• Rounding. The algorithm starts with a solution x of (GAP-LP). It then uses this solution to construct
a maximum weight bipartite matching instance (G,w) and a fractional solution y to lp(G,w) such
that (a) lp(y) = lp(x), that is, the LP-value of y in the bipartite matching is at least that of x in
the GAP instance, (b) given an integral matching M in G of weight w(M), can construct a feasible
solution σ : J → I of value alg(σ) ≥ w(M)/2. Together with Theorem 1, we get a 2-approximation
since one can obtain a matching M with w(M) ≥ lp(y). We now give details.

New Bipartite Graph. For every i ∈ I , evaluate ni :=
⌈∑

j∈J xij

⌉
. Thus, ni counts the “number” of

jobs that are assigned by the LP to machine i. We now construct a bipartite graph G = (N ∪ J,E),
where one part of the bipartition is J , the set of jobs. The other part N is formed by taking ni copies
of each machine i in I . Let Ni denote this set of ni copies; thus, N =

⊔
i∈I Ni.

We next describe the edges in E. Fix a machine i ∈ I . We now describe the edges between Ni and
J . Consider the job vertices in J in decreasing processing time order w.r.t. i. Indeed, for simplicity
rename the jobs such that pi1 ≥ pi2 ≥ · · · ≥ pim. Now, consider the fractions xi1,xi2, . . . ,xim
in this order. Define j0 = 1, and let j1, j2, . . . , jni−1 be the “boundary” items defined as follows :
xi,1+ · · ·+xi,j1 ≥ 1, and xi,1+ · · ·+xi,j1−1 < 1; xi,1+ · · ·+xi,j2 ≥ 2, and xi,1+ · · ·+xi,j1−2 < 2;
and so on. Formally, for each 1 ≤ ` ≤ ni − 1, we find j` such that

j∑̀
j=1

xij ≥ `;
j`−1∑
j=1

xij < `

Recall there are ni copies of the machine i in Ni. The `th copy, call it i`, has an edge to job vertices
j`−1 to j` (j0 is the item 1). The nith copy has an edge to job vertices jni−1 to m. We repeat this for
every i ∈ I to get all the edges E. For the edge (i`, j) we give weight wi`,j := wij . See Figure 1 for
an illustration.

New Fractional Matching. Now we define yij for i ∈ N and j ∈ J . Once again, fix a machine i and
we now define yi`,j for 1 ≤ ` ≤ ni as follows. It is so defined such that for every copy i`, the total
fractional weight incident on it is at most 1 (in fact, it’ll be exactly 1 for all copies but the nith copy).
The total fractional weight incident on item j is the same as that induced by x. It should be clear how
to do it given the way edges are defined above. See Figure 1 for an illustration. Formally, it is

yi`,j = xij , for j`−1 < j < j` or jni−1 < j ≤ m
yi`,j`−1

= xi,j`−1
− yi`−1,j`−1

(if ` = 1, then the second term is 0).

yi`,j` = 1−
j`−1∑
j=j`−1

yi`,j ∀1 ≤ ` ≤ ni − 1

The following proceeds from the definition and will be crucial later.

Claim 2. For any machine i, for any 1 ≤ ` ≤ ni − 1, we have
∑j`

j=j`−1
yi`j = 1.

3

𝑖

ordered in decreasing 𝑝𝑖𝑗

0.7 0.6 0.9 0.5 0.6

ordered in decreasing 𝑝𝑖𝑗

0.7 0.3
0.7 0.5 0.3

𝑛𝑖 = 3.3 = 4

0.3 0.2
0.3

Ni

𝑖1 𝑖2 𝑖3 𝑖4

𝑗0 𝑗1
𝑗0 𝑗1 𝑗2 𝑗3 𝑗2 𝑗3

𝐱𝑖𝑗
𝐲𝑖𝑗

Figure 1: Illustration of edges between Ni and J for one machine i, and also the description of y-values on
these edges. Note that the y-load on jobs equal the x-loads, and the y-load on vertices i1 to i3 is 1, while
on i4 it is < 1.

Proof. Since ` ≤ ni − 1, yi`j > 0 for j` ≤ j ≤ j`+1, and they sum to exactly 1.

Claim 3. y is a valid feasible solution to (bipMWM-LP) with value lp(y) = lp(x).

Proof. The following can be inspected. For any job j and i ∈ I , we have
∑

i`∈Ni
yi`,j = xij . Thus,

by design of y, we have that y satisfies (2) where R = J . It also implies
∑

i`∈Ni
wi`,jyi`,j = wijxij

since wi`,j = wij . Thus, lp(y) = lp(x). By design, we have
∑

j∈J yi`,j ≤ 1 for all i` ∈ Ni.

Rounding and Pruning. From Theorem 1, we get that G = (N ∪ J,E,w) has a bipartite matching M
with w(M) ≥ lp(y). The GAP rounding ends by showing how to obtain σ : J → I using M . One
idea is the following: for every (i`, j) ∈M where i` ∈ Ni, allocate job j to machine i. Let’s call this
allocation σ′.

Here is the main lemma which implies 2-approximation.

Lemma 1. For any machine i,
∑

j∈J :σ′(j)=i pij ≤ Bi + ∆i, where ∆i := maxj∈J pij .

Proof. This is where we use the fact that the items (for machine i) were ordered in decreasing order
of processing times when we formed the graph. Let J` be the set of jobs from j`−1 to j`, and let Jni

be the jobs from j` to m. Note that the vertex i` can be matched to a vertex only from J`. Let σ′` be
this job, and we let it be ⊥ if i` was unmatched; in this case we define pi`,σ′` := 0.

Since x is a feasible solution to (GAP-LP), we get

Bi ≥
∑
j∈J

pijxij =

ni∑
`=1

∑
j∈J`

pijyi`,j (7)

Now, since the pij’s are in decreasing order, for any j ∈ J` and j′ ∈ J`+1, we have pij ≥ pij′ . In
particular, we have pij ≥ pi,σ′`+1

for all 1 ≤ ` ≤ ni − 1, j ∈ J`. Therefore,

For 1 ≤ ` ≤ ni − 1,
∑
j∈J`

pijyi`,j ≥ pi,σ′`+1

∑
j∈J`

yi`,j =︸︷︷︸
Claim 2

pi,σ′`+1

4

Substituting in (7), we get

Bi ≥
ni−1∑
`=1

pi,σ′`+1
= loadσ′(i)− pi,σ′1

Since pi,σ′1 ≤ ∆i, by definition, the lemma follows.

In particular, if we define S′i := {j ∈ J : σ′(j) = i} and let S ′ = (S′1, . . . , S
′
n), then val(S ′) =

w(M) ≥ lp(x), but for the load on a machine i we can only say loadi ≤ Bi + ∆i.

To obtain a valid approximation algorithm, for every machine i, we partition S′i into two : S′i,1 which
contains the job j ∈ S′i with the largest pij and the rest which we call S′i,2. We define Si to be the one
among these with the largest weight. That is, Si = S′i,1 if

∑
j∈S′i,1

wij ≥
∑

j∈S′i,2
wij , and Si = S′i,2

otherwise. Note that by design (a)
∑

j∈Si
wij ≥ 1

2 ·
∑

j∈S′i
wij , and (b)

∑
j∈Si

pij ≤ Bi. The reason
for (b) is that

∑
j∈S′i,1

pij ≤ Bi since j is a single job where xij > 0, and thus pij for this job is≤ Bi,
and

∑
j∈S′i,2

pij ≤ Bi due to Lemma 1. Therefore, at the end we end with a feasible allocation S with

total value val(S) ≥ w(M)
2 ≥ lp(x)/2.

To summarize,

1: procedure GAP ROUNDING(I = (I ∪ J, pij , wij)):
2: Solve (GAP-LP) to get x.
3: Form bipartite graph G = (N ∪ J,E,w) with fractional solution y.. lp(y) = lp(x).
4: Find matching M in G with w(M) ≥ lp(y) ≥ lp(x).
5: Find tentative assignment σ′ of all j ∈ J with val(σ) ≥ lp(x).
6: For each i ∈ I either assign job with max processing time among jobs allocated to it by
σ′, or the remaining, whichever gives more value.

Theorem 2. GAP ROUNDING is a 1
2 -approximation for the Generalized Assignment Problem.

Remark: Recall the load balancing problem from a previous lecture : n jobs with processing
times pj , m machines, goal was to find an assignment which minimizes the maximum load on
a machine. This problem has a PTAS, and indeed, an EPTAS. A generalization of the problem,
called makespan minimization on unrelated machines is the same input as above except job i
takes a different pij time on machine i, and the pij’s for different i’s may not be related. This
is a much harder problem, and in fact, there can be no 1.499-approximation algorithm unless
P = NP . On the other hand, note that the algorithm described here gives a 2-approximation. In
particular, in (GAP-LP) replace Bi in (5) by T , and find (using binary search, say) the smallest
T for which the LP returns a feasible solution. Lemma 1 shows that if the LP returns a feasible
solution, then we can assign all jobs with maximum load ≤ 2T , since ∆i ≤ T due to (6).

Notes

The algorithm for GAP described here is from the paper [2] by Shmoys and Tardos. This generalized a
result from an earlier paper [5] by Lenstra, Shmoys, and Tardos which gave the first 2-approximation for

5

the unrelated makespan minimization problem. This later paper also contained the 3
2 − ε hardness, and

closing this gap has resisted effort and is an outstanding open problem. For GAP, the version we study,
better approximation algorithms are possible. There is an (1− 1

e)-approximation algorithm described in the
paper [4] by Fleischer, Goemans, Mirrokni, and Sviridenko, and this factor was improved to (1− 1

e +ε0) for
a (very) small constant ε0 in the paper [3] by Feige and Vondrák. The best known hardness of approximation
for GAP is 10

11 which can be found in the paper [1] by Chakrabarty and Goel.

6

References

[1] D. Chakrabarty and G. Goel. On the approximability of budgeted allocations and improved lower
bounds for submodular welfare maximization and GAP. SIAM Journal on Computing (SICOMP),
39(6):2189–2211, 2010.

[2] David B. Shmoys and Eva Tardos. An approximation algorithm for the generalized assignment problem.
Mathematical Programming, 62:461–474, 1993.

[3] U. Feige and J. Vondrák. Approximation algorithms for allocation problems: Improving the factor of
1− 1

e . Proceedings of FOCS, 2006.

[4] L. Fleischer, M. X. Goemans, V. Mirrokini, and M. Sviridenko. Tight Approximation Algorithms
for Maximum General Assignment Problems,. Proc., ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2006.

[5] J. K. Lenstra, D. B. Shmoys, and E. Tardos. Approximation Algorithms for Scheduling Unrelated
Parallel Machines. Math. Programming, 46:259–271, 1990.

7

